Simple Harmonic Motion with Springs

Version 5/27/2016


pg. 1 of 5
Simple Harmonic Motion with Springs

Version 5/27/2016


pg. 2 of 5

Simple Harmonic Motion with Springs
The purpose of this exercise is to explore some of the variables affecting the oscillation of a mass hanging from a spring (“simple harmonic motion”).  In particular, the dependence of the oscillation frequency on oscillation amplitude and mass is examined.  A measurement of the stiffness of the spring (“spring constant”) is also made, using linear regression.
[Note to Instructor:  The equipment list and procedure given below make use of the Pasco motion sensors and Xplorer GLX data loggers that are used in the Physics lab.  One could make the same measurements more simply (although somewhat less precisely) by mounting a meter stick vertically next to the spring for amplitude measurements, and using a stopwatch for period measurements.  Also, one could eliminate the need for the mass balance by simply adopting a typical mass value for the spring.]
	Equipment:
	• Pasco Xplorer GLX
	• USB cable for Xplorer GLX

	
	• AC adaptor for Xplorer GLX
	• Vertical table clamp

	
	• Pasco motion sensor (PS-2103A)
	• 2 cross clamps (ring-stand clamps)

	
	• 1 long, 1 short support rods
	• Large spiral spring

	
	• Test-tube clamp
	• Set of slotted weights

	
	• Mass hanger
	• Plumb bob (mass on a string)

	
	• Tape, string, and scissors
	• Ring stand

	
	• Electronic mass balance
	• Wire gauze patch
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Fig. 1
Procedure:
I.  Preliminary Spring Mass Measurement and Experimental Set-up
1. Measure and record the mass of your spring.  (If you hook the spring’s two ends together, it will form a ring which fits conveniently on the balance pan.)  You may assume that the uncertainty in a mass value m as measured by the electronic balance is 
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2. Construct a support frame for the spring, as drawn in Fig. 1 above.  Arrange the test-tube clamp so that it holds the spring, large end down, about 2 meters above the floor.  Hang the 50 g mass hanger from the spring.  With some string or a twist tie, tie the spring to the clamp, and the mass hanger to the spring, to keep them in place.  (If you use a twist tie to tie the mass hanger to the spring, you might want to weigh the tie along with the mass hanger, to see how much its presence alters the mass of the hanger.)  Place a 500 g mass on the mass hanger, taping it down so it won’t fall off.
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Fig. 2

II.  Recording the Motion of an Oscillating Mass as a Function of Time
3. Using the AC adaptor, plug the GLX into a power outlet.  Set the range switch on the side of the motion sensor to “long-range” (that’s the switch setting marked by a little human stick figure).  Plug the motion sensor’s cord into one of the GLX ports.  Using a plumb bob for vertical alignment, place the motion sensor on the floor directly below the mass hanger.  Place a wire gauze patch on the ring stand just above the motion sensor.  (The purpose of this wire gauze is to protect the sensor from something accidentally falling on it.  The sensor should easily be able to “see” through the gauze.  Nonetheless, do still be careful not to step or drop a weight on the motion sensor for the remainder of the lab!)  Note that the motion sensor locates an object by emitting a pulse of ultrasonic sound and timing the return of an echo.  This sound pulse is not emitted in a straight column from the sensor, but in a cone with an angle of about 15-20(.  (See the information sheet that comes with the sensor for more details.)  Consequently, some care should be taken to keep the edge of the table, the vertical support rod, the wire from the sensor, or any other nearby object from falling inside this cone of detection and causing a spurious echo.  Also keep in mind that the sensor cannot detect anything closer than about 20 cm.
4. Turn on the GLX unit.  Press the Home key and then F4 (Sensors).  Arrow down to Sample Rate and press the + or – button as necessary to set the sample rate at 20 samples/s.

5. Press the Home key and then F1 (Graph).  Now pull the mass straight down about 20 cm and let it go from rest.  Try to release it so that it oscillates straight up and down with no sideways motion.  Once you have a nice oscillation going, press the ► button in the center of the GLX keypad to start data collection.  You should hear the motion sensor’s characteristic clicking while it is taking measurements, and see a sinusoidal graph of position vs. time take shape on the GLX display screen.  After about five full cycles of the oscillation have appeared, press the ► button again to end data collection.
6. Press F1 (Auto Scale) to expand the graph so that it fills the screen.  If you don’t like the appearance of this graph (e.g., something got in the sensor’s way during data collection, or the sensor lost track of the oscillating mass), you can press the ( button to highlight the active fields on the graph screen, then arrow over to “Run #1” at the upper right of the screen, press ( again, and select option 4 (Delete Run…).

7. Once you have obtained a good-looking graph, press F3 (Tools) and select option 1 (Smart Tool).  This will display each data point’s coordinates as you arrow the cursor along the graph.  Using this tool, record coordinates that will tell you this periodic function’s amplitude A and period T.  Figure 2 above shows a typical graph that illustrates the meaning of these quantities.  (Note that, because of the discrete nature of your data points, the most accurate way to measure the period T is to average the duration of several cycles.)
III.  Test for Dependence of the Period of Oscillation on the Amplitude
8. Now let’s explore how the period T depends upon the amplitude A of the motion.  First, create a table like that shown below, and record in it the pair of values from the run you just completed.  Then repeat Steps 5-7 above to obtain four more measurements of the period, using as nearly the same oscillation amplitude as you can.  How much scatter do you see in these period values?  What uncertainty δT would you assign to the average period value derived from these measurements?

	Amplitude A
(in m)
	Period T
(in s)

	…
	…

	…
	…


9. Repeat Step 8 for a set of four or five different amplitudes of oscillation from what you used before, spanning a range of oscillation amplitudes between about 5 cm and 40 cm.  For each amplitude value, average together the results of five independent measurements of the period to obtain an average period value with assigned uncertainty, T ± δT.
10. In Excel, make a scatter plot of the results of all these measurements (amplitude as independent variable, period as dependent variable).  What correlation do you see between the two variables?  Can you use oscillation amplitude as a predictor of period?

[Note to Instructor:  Students should find that these two variables are in fact uncorrelated!  You may or may not wish to have them determine the correlation coefficient value.]

IV.  Test for Dependence of the Period of Oscillation on the Mass

11. Finally, let’s explore how the period T depends upon the mass m oscillating on the spring.  To do this, run a series of at least five more trials with different amounts of mass m placed on the hanger, starting with 0 g (i.e., the hanger alone) and ending with 900 g.  It would be ideal to use the same amplitude of oscillation (e.g., about 20 cm) for each of these runs.  With the lightest masses, however, be careful to use only a very small amplitude, or else the spring will “bump into itself” as it tries to oscillate past its fully compressed state.  Conversely, with the largest mass, be careful not to over-stretch the spring and bend it permanently out of shape!  You may need to change the height of the test-tube clamp above the sensor for some of these runs, to keep the mass hanger within range of the sensor.
CAUTION:
To avoid deforming the spring,
do not exceed 900 g on the hanger!

For each of these runs, measure and tabulate the mass m on the hanger and the corresponding period T, as in this table (don’t forget to include the entry you already have for 
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	Mass on hanger m (in g)
	Period T
(in s)

	…
	…

	…
	…


12. Now let’s do some curve-fitting to the period vs. mass data.  We’ll take the total oscillating mass 

 as the independent variable, and period T as the dependent variable.
Note:
The total oscillating mass 

 should include not only the value of m, but also the mass of the hanger itself (which was 50 g), the mass of the twist tie (if necessary), and one-third of the mass of the spring.  Therefore, you should add another column to your data table from Step 11, to record the value of 

 for each run.

13. Use the Excel function LINEST to make a linear fit to these data (
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 for some constants A and B), and look carefully at the result (maybe plot the residuals):  does it look reasonable, or a bit suspicious?  Describe your observations clearly.  Now try a  power-law fit (i.e., of the form 
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 for some constants A and B).  From your scatter-plot and curve-fitting, what kind of dependence of the period on the total mass of the oscillating object would you propose?  Is the best-fit value of the exponent B in the 
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 power-law fit close to some simple value which suggests that the true relation between T and 

 is some fairly simple but non-linear relation?
[Note to Instructor:  The expected relation is that period is proportional to the square root of the total oscillating mass.  Does Excel offer any easier way to perform a power-law fit, than by first taking the logarithm of all data values and doing a linear fit of the form 
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?  Students will probably need to be guided to this form, if it’s necessary to use it to find A and B.]

V.  Determination of the Spring Constant

14. Place 700 g of mass on the hanger, taping it down lightly so it won’t fall off.  Adjust the spring’s support frame as necessary, so that the bottom of the mass hanger is at least 20 cm above the motion sensor.  With the mass stationary, proceed as in Steps 5-7 to measure and record the height y of the mass hanger above the sensor.  Assign an appropriate uncertainty 
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 to this height value, based on the appearance of your graph (it won’t be a perfectly horizontal line, because the spring is always vibrating a bit!).
15. Now systematically subtract mass from the hanger, in 100 g increments, each time recording the height 
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 of the mass hanger as in Step 14, until all the mass has been removed from the mass hanger for your last measurement.
16. You have probably noticed that the amount by which the spring is stretched is very nearly proportional to the amount of mass hanging from the spring!  Phrased slightly differently, we say that the force F applied to a spring is proportional to the extension 
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 of the spring beyond its equilibrium length 
[image: image12.wmf]eq

x

, i.e., 
[image: image13.wmf])

(

eq

x

x

k

F

-

=

, where the constant of proportionality k is called the stiffness or spring constant.  In this experiment, the value of the force F is the weight of the loaded spring:  
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 is the acceleration due to gravity and, as in Step 12, 

 includes not only the mass placed on the hanger, but also the mass of the hanger itself (50 g) and one-third of the mass of the spring.  Tabulate the values of F corresponding to each of the height measurements you recorded in Steps 14-15.
17. One can consider two different ways of extracting the value of the spring constant k from your data.  One way is to compute the ratio 
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 of adjacent data pairs as each successive mass is removed from the hanger.  Then find the average of these 
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 individual spring constant estimates.  If these N estimates can be regarded as independent random measurements of the “true” spring constant (is that assumption justified?), then an estimate of the uncertainty 
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 in the average spring constant value is given by the standard error of the mean, 
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 is the sample standard deviation of the N estimates.
18. An alternative way to determine the spring constant k is to find the best-fit line to the graph of force [image: image21.wmf]F

 vs. height y:  the absolute value of the slope of this line will be k.  Use the Excel function LINEST to perform this linear regression, and note that LINEST also yields a value for the “standard error” of the slope.  How does this determination of the spring constant, 
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, compare with the averaging you did in Step 17?  Do the two results agree, to within their respective uncertainties?
[Note to Instructor:  More advanced students might be asked to investigate the formulas used by Excel to determine the standard errors in the slope and y-intercept of a linear regression analysis.  What assumptions underlie these formulas?  A further consideration, worthy of a student research project in its own regard, is how one should perform linear regression when (as is typically the case in experiments) both the independent and dependent variable values have uncertainties associated with them.  Traditional “least-squares” optimization assumes that the independent variable values are precisely known!  For three different approaches to this problem, see, e.g.:

· J. Vicente de Julián-Ortiz et al., “Two-Variable Linear Regression:  Modeling with Orthogonal Least-Squares Analysis,” J. Chem. Educ., 2010, 87(9), pp. 994-995
· J. Carr, “Orthogonal Regression:  a Teaching Perspective,” International Journal of Mathematical Education in Science and Technology, 2012, 43 (), pp. 134-143
· T. Moore’s program LinReg 2.06, at http://www.physics.pomona.edu/sixideas/old/sicpr.html .]
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